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Microstrip Discontinuity Capacitances for Right-An81e Bends,

T Junctions, and Crossings

PETER SILVESTER AND PETER BENEDEK

Abstract—The integral equations governing the electrostatics of
the excess charge distribution near microstrip right-angle bends, T
junctions, and crossings are formulated and subsequently solved by
a projective method. Extensive discontinuity capacitances are pre-
sented in graphical form. Where possible, the data are compared to
the available experimental results.

INTRODUCTION

N

UM EROUS papers have been published, mostly dur-

ing the past year, treating various microstrip dis-

continuities such as open circuits [I ]– [7 ], gaps [1],

[8]- [IO], and steps [9]- [12]. In earlier papers by the authors,

a new method capable of determining the microstrip discon-

tinuity capacitances for open circuits [7], gaps, and steps

[IO] has been presented. This method determines the excess

discontinuity capacitance directly, so that the overall ac-

curacy realized does not suffer degradation from subtraction

of nearly equal numbers. This approach can be readily ex-

tended to other structures, such as microstrip right-angle

bends, T junctions, and crossings, for which the available data

are very scarce.

DEFINITIONS AND METHODOLOGY

The best way to introduce the methodology utilized is by

actually obtaining the governing integral equations for the

excess charges, and hence excess capacitances, at various dis-

continuities. First, symbols are defined and a key artifice is

described. Let ~~fl) (Pz) denote the potential, at a point Pz in

the plane of the microstrip resulting from an infinite micro-

strip-like charge distribution a~fl) (F’.’), i.e., a charge distribu-

tion of exactly the form that results when an infinitely long

microstrip line is electrostatically charged. The subscript t on

the charge and potential coordinates P.’ ancl P. indicates that

the axis of the microstrip is parallel to the x axis, while the

superscript 1 indicates a microstrip of width-to-height ratio

(w/lz)l. When the meaning is obvious both of these will be

omitted. Therefore

@m(’)(P.) = s (1)~~(1) (PZ’)G~(PZ; ~z’) alp.’.

The Ck-cen’s function required in (1) is given by
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where y, y’ are potential and charge coordinates in the cross-

sectional plane of the microstrip parallel to the microstrip,

while that required in (2) is
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The Green’s function Gt(x, y; y’) represents the potential

value at any point (x, y) of the top of the substrate, when a

unit line charge with sudden polarity reversal at x=.$ is

placed at y’.

The charge distribution that causes 0$1) is exactly the

same as am(l) (Pz’) over the interval (.!j, ~ ) and equal to
— ~~(1) (Pxl) over the interval (— co, ~). While this situation

may be physically difficult to realize, there is no mathemat-

ical objection to it. This simple artifice holds the key to the

useful formulation of the e~cess charge problem, a: will be

shown in the following.

To evaluate the integral in (2), note that the charge distri-

bution resulting from (1) is of the form given by

r-rm(y’) = & &a,f,(y’)

where

(6)

G~(Pm; Px’) dPz’ is the Green’s function appropriate to the di-

electric substrate employed (see (3) following). ‘(y’) = EHH-Y’21 ‘>1
Now let 1$:(1)(P.) represent the potential, in the plane of the

microstrip, associated with a microstrip-like charge-density
1, j=l. (7)

distribution with a sudden polarity reversal in the charge at

x = ~. It can be shown that
Note that the Green’s function in (4) has a singularity at

y = y’, while the ratio

@f(’)(P.) = s(JW(lJ (Pr’)Gt(P,; Pz’) dP.’. (2) Gf(x, y; y’)
?&(y; y’) = — ——

IY-Y’I
(s)
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342 mEETRANSACTIONS ONtilICRO\VAVE THEORY AND TECHNIQUES, MAY 1973

J- X

h
T

I (a)

1 1

1

I

+2
(b)

TI

Fig. 1. Microstrip right-angle bend together with equivalent
circuit proposed by Stephenson and Easter [13].

performed in (2)

@f(’)(*, Y)

104- Y’1
IY-Y’1+1

= : “’J’ –, 4-yO -f~(Y’)%(Y; Y’) dy’. (9)

In this integrandf~(y’) r:(y; y’) is nonsingular over the inter-

val y’ c [— 1, 1]; all the singularities are incorporated in the

weight function log [I Y—y’]/(\Y— Y’l +1)]/V’l-Y’2. Gaus-

sian quadrature formulas with this weight can be developed

for each y. This work is confined to microstrips assumed to be

of zero thickness.

MICROSTRIP RIGHT-ANGLE BENDS

For the case of a microstrip right-angle bend, the only data

available appear to be the experimental results of Stephenson

and Easter [13 ]. Their equivalent circuit includes a shunt

capacitance to account for charge accumulation at the corner,

and series lengths of transmission lines on either side to ac-

count for the increase in current path length around the cor-

ner. This circuit, together with the reference planes used, is

shown in Fig. 1. Stephenson and Easter devised two types of

resonant measurements: 1) two 90° corners incorporated into

Fig. 2. Potential residual near a microstrip right-angle bend
(wl/h= 1.0 and e,= 1.0).

positive x and y axes up to terminal planes T1 and Tz. There-

fore, the potential residual required is

while the governing integral equation for the excess charge is

@ab.nd(p) = sU.be”d(~’)Gbend(~; $“) alp’. (11)

Although the indicated integration is over the entire bend in-

cluding the semi-infinite arms, both potential residual and ex-

cess charge fall to zero on moving away from the discontinuity

region.

The Green’s function can be shown, in a manner analogous

to that used for the rectangular plates separated by a dielec-

tric sheet [14], to be

Gbend(x, ‘y; X’, y’)

1
.

27r(@ + ,1) [ 1
j(o) – (1 – K) ~ K“-’ j(w) (12)

n=l

where

pd(?t) = [(24’+ (y’)2+(y;y’)2]-”2 (,3,

a closed-ring resonator; 2) a right-angle bend in a symmetrical

open-ended resonator. At various frequencies, voltage maxima

or minima occur at the corners, and the two unknowns in the

model can be evaluated.

The excess charges which constitute Cb.nd are due to the

potential residual, when two microstrip-type charge distribu-

tions that exist on the arms of a right-angle bend up to termi-

nal planes T1 and Tz, as shown in Fig. 1.
Let # @@(P.) be the potential corresponding to an infinite

microstrip-like charge distribution of ~u~ (P,’) parallel to the

x axis. Also let 3+1.0(P2) represent the potential corresponding

to a microstrip-like charge distribution with a polarity rever-

sal at x = 1.0. Therefore, the potential corresponding to a mi-

crostrip-like charge on the interval x E (1, ~) is, by superposi-

tion, ; [@~(P,) +010.(PJ ]. Similarly, in the Y direction, the

potential corresponding to a microstrip-like charge on the

interval y G (1, co) is ~ [rj~(.PV) +01.o(PV) ]. BY superposition

one can generate microstrip-like distributions parallel to the

and the bend capacitance is calculated from

Cb.nd =
s

Uxbend(P’) alp’. (14)

substrate ofA typical residual voltage for dielectric

~~= 1.0 and microstrip width-to-height ratio w/lz = 1 is shown
in Fig. 2. Not shown in this figure is that by moving further

away from the discontinuity, some small amount of negative

potential residual appears and then it dies down to zero. This

is due to the interaction between the two normal microstrip-

Iike distributions and is most noticeable for small e, and w/h,

Numerical experiments indicate that the most significant part

of the excess charge is located near the outer edge of the corner

region. Thus, the typical discretization used is also shown in

Fig. 2. Although the symmetry about the 45° angle is not ac-

counted for in (13), the discretization of the region is done so
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Fig. 3. Microstrip T junction together with its equivalent circuit.

that full advantage may be taken of this symmetry during

computation,

MICROSTRIP T JUNCTIONS

In the case of microstrip T junctions, five sources of data

were located. Stinehelfer [1] and Troughton [2] presented

experimental results. They both performed transmission loss

measurements on microstrip T structures to determine the

electrical length of a stub; comparing this with the physical

length, the “electrical defining plane” ‘[2 ] for the stub can be

determined. Stinehelfer presented results obtained using

quarter-wavelength-long short-circuited stubs, while Trough-

ton used quarter- and three-quarter-wavelength-long open-

circuited stubs. Both investigators indicated that a correction

to the separation between two stubs is also required.

On the theoretical side, Leighton and Milnes [15], as well

as Wolff, Kompa, and Mehran [11], [12], used a parallel-

p!ate waveguide approximation valid over a restricted range

of parameters, with magnetic walls on the sides. Leighton and

Milnes then used a Babinet equivalent of this model to obtain

a new model with a T junction equivalent circuit previously

determined by Marcuvitz [16]. Wolff, Kompa, and Mehran,

on the other hand, matched wave components at the discon-

tinuity planes and were able to obtain scattering coefficients

for the T junction.

The simplest equivalent circuit for the T junction is an

outcropping of the work of experimentalists. The microstrip T

junction, together with this model, is shown in Fig. 3. The

lengths of transmission lines are used to correct for the electri-

cal defining planes of the stub and main lines, while the shunt

capacitor accounts for the charge surplus or deficiency at the

junction.
The potential residual, causing a charge surplus or defi-

ciency at the T junction, is that due to three microstrip-like

charge distributions on the arms of the T structure, up to the

terminal planes TI, T.z, and Ta, shown in Fig. 3(a). To evalu-

ate this potential residual, take a microstrip-like charge dis-

tribution ~a~tz) (Pz’), of width-to-height ratio (w,/h) ,

parallel to the x axis, with corresponding potential ~~~f’j (P,),

given by (1). Take another microstrip-like charge distribution

~u~fz) (PZ’), having a polarity reversal at x= WI, with the cor-

responding potential ~@lL2) (Pz), given by (2). The superposi-

tion of these two distributions yields a microstrip-like charge

of width-to-height r:ttio (wz/h) on the interval x G [WI, @ ]

and a corresponding potential of ~ [~~tz) (PC) +~~l(z) (Po) ].

Similarly, in they direction, an infinite microstrip-like charge

distribution a~cl) (Pz’) together with charge distributions
~a~(o (~ti~) with polarity reversals at Y = 1.0 and — 1.0 areL

required. The respective potentials, by (1) and (2), are

~~(’) (~g), *@I.O(’) ($’.), and ;4–I.0(’) (~~). The superposition of
these three yields a microstrip-like distribution on the two

intervals I y I >1.0, with corresponding potential {#@(l) (Pu)

+: [@lo –4-I.0(’)(PV) ] ] .

Now, superposing the two resulting distributions, micro-

strip-like charges are generated on the arms of the T structure

up to the terminal planes Tl, Tz, and Tc. Therefore, the poten-

tial residual, in this case, is

AT(P) = @co– {$ [@m(’)(P.) + dw,(z)(~z)l

+ dm(’)(1’v) + *[@l. o(’)(~.) – r$-1.o(’)(~v)l } (15)

while the integral equation governing the excess charge is

@zT(p) := sU.T(P’)GTU’;~’) alp’. (16)

In (16) both the potential residual and the excess charge fall to

zero moving away from the discontinuity, so that integration

over finite regions suffices.

The Green’s function G~(P; P’) is the same as Gbend(P; P’)

given by (12); however

[ (%2+(+1’”f(n) = (2?’2)’ +

+[(2”’2+(+)2+(%3211’2 ‘“)

and the T junction capacitance is given by

CT = JUZT(P’) dP’. (18)

The potential residual on a dielectric substrate of c,= 9.9,

with main line (zol/lz) = 1.0 and stub line (wz/k) = 1.0 is shown

in Fig. 4. In this case regions of negative residuals are much

more pronounced than for the right-angle bend. A typical

discretization of the region is also shown in Fig. 4.

MICROSTRIP CROSSINGS

For rnicrostrip crossings, it appears that the only pub-

lished source of data is that obtained experimentally by Stine-

helfer [1]. He performed transmission loss measurements, as

in the case of T junctions, on a pair of quarter-wavelength

short-circuited stubs placed back to back, so as to determine

the electrical lengths of the stubs. Similarly, a correction to

the physical distance between a pair of crossings was noted.

The circuit model shown in Fig. 5(b) for the crossing

shown in Fig. 5(a) was arrived at as a consequence of the re-

sults obtained in the above experiments The lengths of trans-

mission lines correct for the electl-ical lengths of the stubs and

their electrical spacing from various other discoutinuities. The

shunt capacitor C+ takes care of the charge surplus or defi-

ciency near the crossing.
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Fig.4. Potential residual neara microstrip T junctiou
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Fig. 5. Microstrip crossing together with itsequwalent circuit.

Asinearlier discontinuities, thepotential residual sought

is obtained from the potential due to microstrip-like charge

distributions of the four arms of the crossing, up to the refer-

ence planes Tl, T2, T~, and Tb.
To obtain such a distribution, an infinite microstrip-like

charge CT~@(P.’) of width-to-height ratio (wz/lz) is required.

Also needed are two charge distributions ~o~fzJ(Pz’) with

polarity reversals at x=wl/2 and —wl/2. The corresponding

potential distributions, given by (1) and (2) are +Q(2)(PZ),

C%W2(2)(P2), and 4–w,
c21(pZ), respectively. BY superposition!

microstrip-like charge densities of (wZ/h) are obtained on the

two intervals 1x1 >wl/2, and the resulting potential is

R-at

2
j -002

w/h (tOAIN) = 1.0

-0035

w/hlSTUB)= 3.0

..-

Fig. 6. Potential residual neara microstrip crossing

(wI/h= 3, wj/h= 1, and 6,=9.9).

{d~(’) (~z) +* [C&l 12(2) (pm) -o-~l ,2(21 (PJ ] ]. Similarly, the po-
tential corresponding to microstrip-like charge distribution
~~(u(pv~) of width-to-height ratio (wI/lz) on the intervals

I yl >10 is {@m(’)(PV) +* [&.O(’)(Pu) -@_,.O@@v) ] }.
By superposition of these two resultant distributions,

microstrip-like charge densities of appropriate width-to-height

ratios are generated, onthe arms of the crossing, up to the four

terminal planes. Therefore, the potential residual sought is

4$+(H=@@–{@m(’)(P.)+;[4,.o(’)(P.)–@-,.o(’)(Pv)]
+@@(2) (Pz)++[4w,,2(2) (P.)–@-w1,2(’)(P.)]] (19)

and the integral equation governing theexcess charge is

@.+(P) = suz+(P’)G+(P; P’) dP’. (20)

As in earlier instances, integration over a finite region is Suffi-

cient, since both potential residual and charge-density dis-

tributiongo to zero on moving away from the discontinuity.

The Green’s function given by (12) is also valid for

G+(P; P’) with

[ (%)2’(591”2j+(%) = (2?2)’ +

+[(2”)2+(+)2+(%321-”2

+[(2”)2+(+)2+(5321-1’2

+[’2”)2+(%)2+(5321”2 ’21)

while the crossing capacitance is given by

c+ = su3+(P’) dPt. (22)

In Fig. 6 the potential residual for a stub of (wl/k) = 3 and

main line of (wj/lz) = 1, on a substrate of relative dielectric
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Fig. 7. Microstrip bend capacitances normalized to strip width as a
function of width-to-height ratio and substrate permittivity.

constant e.= 9.9, is shown. Also shown in the figure is a typical

discretization of the region.

RESULTS AND COMPARISON WITH EXISTING DATA

The bend capacitances obtained by Stephenson and Easter

[13] by means of their two resonant measurements agree with

each other in order of magnitude only. However, the two types

of measurements, both 90° bends and chamfered corners for a

SO-Q microstrip line on alumina substrate, indicate that the

lengths of transmission line in the model of Fig. 1 are negligi-

ble.

For various sound reasons, Stephenson and Easter con-

clude that the result obtained via the right-angle bend in a

symmetrical open-ended resonator is the better of the two.

Error limits are also indicated. Their measurement, at 10

GHz on 0.5-mm Lucalox with a strip width corresponding to

approximately 50-Q characteristic impedance, is shown in

Fig. 7 together with their indicated error limits.

Also shown in Fig. 7 are bend capacitances, calculated by

this method, normalized with respect to strip width for vari-

ous commonly used substrates. As expected, the calculated

values are lower than those obtained experimentally. Never-

theless, the close agreement between the results is an indica-

tion of the accuracy of the method. Typical computation time

on an IBM S360/75 is 50 s for c,= 1.0 and 110s for e,=9.9.

Stinehelfer’s [1] measurements, on quarter-wavelength-

Iong short-circuited stubs, indicate that the electrical length

of the stubs is shorter than the physical length, while Trough-

ton’s measurements, on quarter- and three-quarter-wave-

length open-circuited stubs, indicate that the electrical length

of the stub is longer than the physical length. Troughton also

indicates that ‘(if the stub is h/4 and 3 A/4, Al (the correction

to the physical length) is consistent, but differs from the value

found from a half-wavelength stub.” In addition to the specific

problems in each measurement (such as accurate end-effect

correction in Troughton’s case, difficulty of determining the

exact frequency at which total transmission occurs in Stine-

heifer’s case, and accurate phase velocity in both cases), part

of the discrepancy is resolved considering the model given in

Loo1
[-99

m

@
z(n)

mx~

0.1L3 100
0.333 7s
1,0 !30
3.0 25

.2002+— Sh
75 m

STUB IMPEOANCE Z - OHMS

Fig. 8. Microstrip T junction capacitances, normalized to main-line
width, as a function of stub-line impedance.

Fig. 3(b). If L denotes the physical length of the stub, in

Troughton’s case already corrected for the end effect, then

Troughton measured the frequency at which (?z+L) =~/4,

while Stinehelfer measured the conditions under which cot

[27r(h+L)/k] =coC~Z. As a matter of fact, in principle, per-

forming measurements on open- and short-circuited quarter-

wavelength stubs, it would be possible to determine both

1.3and CT. This, however, may be frustrated by the difficulties

already enumerated.

The theoretical results of Leighton and Milnes [15] on the

approximate model of the microstrip line, are valid over a re-

stricted range of parameters. Since both the model and the

reference planes used here are totally different, no comparison

was made with their data.

The approximate theoretical results of Wolff, Kompa, and

Mehran [11], [12] are in terms of magnitudes of scattering

coefficients of the T junction. The data given are for poly -

guide substrate, relative dielectric constant of e,= 2.33, and

they show very pronounced frequency dependence, especially

above 5 GHz. This, at first sight, cannot be explained in terms

of the capacitor CT obtained here. A quick calculation, how-

ever, will indicate that at 5 GHz for e,= 2.33 the wavelength

is about 40 mm, while the typical dimensions required for the

characteristic impedances utilized range from 4.5 to about

10 mm. For such structures the excess charges occupy a sig-

nificant fraction of the wavelength, so that the electrostatic

approximation is not valid. This argument is further sub-

stantiated by their note to the effect that the frequency de-

pendence is small for alumina substrate (e, = 9.9), where realis:.

tic impedances are obtained for smaller width-to-height ratios

and the commonly available substrate thicknesses are 0.020

and 0.025 in.

Fig. 8 shows the capacitance CT normalized to main-line

width plotted against stub-line impedance. The behavior of

CT, in that it varies from positive to negative depending

whether there is charge deficiency or charge surplus, is similar

to that observed experimentally by Matthaei, Young, and

Jones [17] in stripline. Due to the variation of the sign of the

potential residual, generally speaking, the capacitances thus

obtained are expected to have somewhat larger errors than,

for example, in the open-circuit case, where the potential
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Fig. 9. Microstrip crossing capacitances, normalized to main-line
width. as a function of stub-line impedance.

residual is of uniform sign. The central processing unit (CPU)

time requiredon an IBM S360/75 to evaluate C~onadielec-

tric substrate of e7=9.9 is 3.6 min.

The results given by Stinehelfer [I], done on two short-

circuited quarter-wavelength-long stubs back to back, indi-

cate that the electrical Iengthof thestubs is shorter than the

physical length. However, arguing as for the T junction, the

model given in Fig. 5(b) would indicate that such a measure-

ment in effect determines the frequency at which 2 cot

[27r(l,+L) ]/A =coC+Z. L is the physical length of the stub.

Another transmission loss measurement, on quarter-wave-

length-long open-circuited stubs, would give the frequency at

which (L+ L) = k/4. In principle, L and C+ may be determined

from two such measurements. The difficulties with such an

experimental approach were outlined in [1, sec. 5.7.4]. Using

the results given by Stinehelfer, no estimate of C+ can be

made. There appear to be no other data available for com-

parison.

In the computer program the computational details for

the stub and main line are somewhat different. Therefore,

interchanging the width-to-height ratios of the stub and main

line left C+ unchanged. This, in a small measure, provided a

check on the program details.

Fig. 9 shows crossing capacitance values C+ normalized to

main-line width for various main-line impedances, plotted

against stub-line impedance. The stub characteristic im-

pedances range from 25 to 100 Q. The substrate dielectric

constant used is e~= 9.9. As in the case of T junctions, due to

the variation in the sign of the potential residual, generally

speaking the errors in capacitance values can be expected to

be larger than in those cases where the potential residual is of

uniform sign. The computation time required on an IBM

S360/75, for C+ on a relative dielectric constant e,= 9.9 is

about 3.7 min.

CONCLUSIONS

Extensive microstrip discontinuity capacitance values are

presented. In the case of microstrip right-angle bends the only

available experimental result is in close agreement with the

calculations. It is hoped that more experimental results will

become available in the future.

The methodology utilized can be extended to analyze the

electrostatic capacitive effect of virtually any microstrip dis-

continuity.
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