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Microstrip Discontinuity Capacitances for Right-Angle Bends,

T Junctions, and Crossings

PETER SILVESTER axpo PETER BENEDEK

Abstract—The integral equations governing the electrostatics of
the excess charge distribution near microstrip right-angle bends, T
junctions, and crossings are formulated and subsequently solved by
a projective method. Extensive discontinuity capacitances are pre-
sented in graphical form. Where possible, the data are compared to
the available experimental results.

INTRODUCTION
N UMEROUS papers have been published, mostly dur-

ing the past year, treating various microstrip dis-

continuities such as open circuits [1]-[7], gaps [1],
[8]-[10], and steps [9]-[12]. In earlier papers by the authors,
a new method capable of determining the microstrip discon-
tinuity capacitances for open circuits [7], gaps, and steps
[10] has been presented. This method determines the excess
discontinuity capacitance directly, so that the overall ac-
curacy realized does not suffer degradation from subtraction
of nearly equal numbers. This approach can be readily ex-
tended to other structures, such as microstrip right-angle
bends, T junctions, and crossings, for which the available data
are very scarce.

DEFINITIONS AND METHODOLOGY

The best way to introduce the methodology utilized is by
actually obtaining the governing integral equations for the
excess charges, and hence excess capacitances, at various dis-
continuities. First, symbols are defined and a key artifice is
described. Let ¢,V (P,) denote the potential, at a point Py in
the plane of the microstrip resulting from an infinite micro-
strip-like charge distribution ¢,V (P.’), i.e., a charge distribu-
tion of exactly the form that results when an infinitely long
microstrip line is electrostatically charged. The subscript x on
the charge and potential coordinates P;’ and P, indicates that
the axis of the microstrip is parallel to the x axis, while the
superscript 1 indicates a microstrip of width-to-height ratio
(w/h)1. When the meaning is obvious both of these will be
omitted. Therefore

8.0 = [ 0 OPOGUPs PO ARL (O
Go(Ps; P! dP, is the Green’s function appropriate to the di-
electric substrate employed (see (3) following).

Now let ¢;(¥ (P,) represent the potential, in the plane of the
microstrip, associated with a microstrip-like charge-denpsity
distribution with a sudden polarity reversal in the charge at
x=§. It can be shown that

¢E(1)(Pﬁ) = f a'w(‘)(])a‘l)Gt-(Par; Pz,) fZPJ;/. (2)
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The Green's function required in (1) is given hy
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where v, 9 are potential and charge coordinates in the cross-
sectional plane of the microstrip parallel to the microstrip,
while that required in (2) is
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The Green’s function Gg(x, v; ¥') represents the potential
value at any point (x, ¥) of the top of the substrate, when a
unit line charge with sudden polarity reversal at x=§£ is
placed at y'.

The charge distribution that causes ¢ is exactly the
same as 0, P(P,’) over the interval (£ «) and equal to
—0,P(P,") over the interval (— «, £). While this situation
may be physically difficult to realize, there is no mathemat-
ical objection to it. This simple artifice holds the key to the
useful formulation of the excess charge problem, as will be
shown in the following.

To evaluate the integral in (2), note that the charge distri-
bution resulting from (1) is of the form given by

©)
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Note that the Green’s function in (4) has a singularity at
y=1', while the ratio
G(z, 3; %)
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is no longer singular. Substituting into the integration to be
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Fig. 1. Microstrip right-angle bend together with equivalent
circuit proposed by Stephenson and Easter [13].

performed in (2)
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In thisintegrand fi(¥")7¢(y; ¥') is nonsingular over the inter-
val y' €[—1, 1]; all the singularities are incorporated in the
weight function log [|y—3'1/(|y—»'| +1)1/v/T=57. Gaus-
sian quadrature formulas with this weight can be developed
for each y. This work is confined to microstrips assumed to be
of zero thickness.

fiNre(y; ¥) &y'. (9)

MicrosTRIP RIGHT-ANGLE BENDS

For the case of a microstrip right-angle bend, the only data
available appear to be the experimental results of Stephenson
and Easter [13]. Their equivalent circuit includes a shunt
capacitance to account for charge accumulation at the corner,
and series lengths of transmission lines on either side to ac-
count for the increase in current path length around the cor-
ner. This circuit, together with the reference planes used, is
shown in Fig. 1. Stephenson and Easter devised two types of
resonant measurements: 1) two 90° corners incorporated into
a closed-ring resonator; 2) a right-angle bend in a symmetrical
open-ended resonator. At various frequencies, voltage maxima
or minima occur at the corners, and the two unknowns in the
model can be evaluated.

The excess charges which constitute Cyeng are due to the
potential residual, when two microstrip-type charge distribu-
tions that exist on the arms of a right-angle bend up to termi-
nal planes Ty and T, as shown in Fig. 1.

Let % ¢(P:) be the potential corresponding to an infinite
microstrip-like charge distribution of 30 (P;') parallel to the
x axis. Also let $¢1.0(P=) represent the potential corresponding

" to a microstrip-like charge distribution with a polarity rever-
sal at x= 1.0. Therefore, the potential corresponding to a mi-
crostrip-like charge on the interval x €(1, ) is, by superposi-
tion, %[@w(Ps)+¢10.(Pz)]. Similarly, in the y direction, the
potential corresponding to a microstrip-like charge on the
interval yE€(1, ) is 3 [¢w(Py) +¢1.0(Py)]. By superposition
one can generate microstrip-like distributions parallel to the
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Potential residual near a microstrip right-angle bend

Fig. 2.
(wi1/h=1.0 and ¢, =1.0). :

positive x and y axes up to terminal planes T3 and T,. There-
fore, the potential residual required is

6" (P) = ¢ — $[0(P2) + P1.0(P2) ,
+ 6u(Py) + ¢1.0(Py)] (10)

while the governing integral equation for the excess charge is

$.0end(P) = f obend(P)Gnd(P; P) P (11)

Although the indicated integration is over the entire bend in-
cluding the semi-infinite arms, both potential residual and ex-
cess charge fall to zero on moving away from the discontinuity
region.

The Green’s function can be shown, in a manner analogous
to that used for the rectangular plates separated by a dielec-
tric sheet [14], to be

GPd(x, y; &', 3')

hm—ﬁfﬁﬂiKﬂﬂmJﬂ%

T w

and the bend capacitance is calculated from

- 27 (eo + €1)

where

i) = [ nye +

Chena = f obend(PYy AP, (14)

A typical residual voltage for dielectric substrate of
€= 1.0 and microstrip width-to-height ratio w/k =1 is shown
in Fig. 2. Not shown in this figure is that by moving further
away from the discontinuity, some small amount of negative
potential residual appears and then it dies down to zero. This
is due to the interaction between the two normal microstrip=
like distributions and is most noticeable for small ¢, and w/%.
Numerical experiments indicate that the most significant part
of the excess charge is located near the outer edge of the corner
region. Thus, the typical discretization used is also shown in
Fig. 2. Although the symmetry about the 45° angle is not ac-
counted for in (13), the discretization of the region is done so
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Fig. 3. Microstrip T junction together with its equivalent circuit.

that full advantage may be taken of this symmetry during
computation.

MicrosTRIP T JUNCTIONS

In the case of microstrip T junctions, five sources of data
were located. Stinehelfer [1] and Troughton [2] presented
experimental results. They both performed transmission loss
measurements on microstrip T structures to determine the
electrical length of a stub; comparing this with the physical
length, the “electrical defining plane” [2] for the stub can be
determined. Stinehelfer presented results obtained using
quarter-wavelength-long short-circuited stubs, while Trough-
ton used quarter- and three-quarter-wavelength-long open-
circuited stubs. Both investigators indicated that a correction
to the separation between two stubs is also required.

On the theoretical side, Leighton and Milnes [15], as well
as Wolff, Kompa, and Mehran [11], [12], used a parallel-
plate waveguide approximation valid over a restricted range
of parameters, with magnetic walls on the sides. Leighton and
Milnes then used a Babinet equivalent of this model to obtain
a new model with a T junction equivalent circuit previously
determined by Marcuvitz [16]. Wolff, Kompa, and Mehran,
on the other hand, matched wave components at the discon-
tinuity planes and were able to obtain scattering coefficients
for the T junction.

The simplest equivalent circuit for the T junction is an
outcropping of the work of experimentalists. The microstrip T
junction, together with this model, is shown in Fig. 3. The
lengths of transmission lines are used to correct for the electri-
cal defining planes of the stub and main lines, while the shunt
capacitor accounts for the charge surplus or deficiency at the
junction.

The potential residual, causing a charge surplus or defi-
ciency at the T junction, is that due to three microstrip-like
charge distributions on the arms of the T structure, up to the
terminal planes T4, T, and T, shown in Fig. 3(a). To evalu-
ate this potential residual, take a microstrip-like charge dis-
tribution 1¢,.?(P,"), of width-to-height ratio (w/h),
parallel to the x axis, with corresponding potential 1@ (Py),
given by (1). Take another microstrip-like charge distribution
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10, (P,’), having a polarity reversal at x=w;, with the cor-
responding potential 1¢w;? (P), given by (2). The superposi-
tion of these two distributions yields a microstrip-like charge
of width-to-height ratio (w;/k) on the interval x €[w;, |
and a corresponding potential of 3[¢0® (Ps)+¢u, P (Ps)].
Similarly, in the y direction, an infinite microstrip-like charge
distribution ¢,V(P,’) together with charge distributions
10,V(P,) with polarity reversals at y=1.0 and —1.0 are
required. The respective potentials, by (1) and (2), are
P (P,), 3100 (P,), and 3¢_1.0P(P,). The superposition of
these three yields a microstrip-like distribution on the two
intervals |y| >1.0, with corresponding potential {¢,™®(P,)
+% [¢1.0(1) (Py) _¢—1.0(1)(Py)] } .

Now, superposing the two resulting distributions, micro-
strip-like charges are generated on the arms of the T structure
up to the terminal planes T4, T, and Ts. Therefore, the poten-
tial residual, in this case, is

¢ (P) = ¢ — {3[60P(P2) + 60, @ (P)]

+ 6.0 (P,) + $[910D(P) — -0 (P)]} (19)
while the integral equation governing the excess charge is
¢, 7 (P) = f o L(PYGT(P; P") dP'. (16)

In (16) both the potential residual and the excess charge fall to
zero moving away from the discontinuity, so that integration
over finite regions suffices. ~
The Green’s function GT(P; P') is the same as GPend(P; P’)
given by (12); however

o= (5 (5]
s () + (5]

and the T junction capacitance is given by

Cr = f o T(P") dP'. (18)

The potential residual on a dielectric substrate of ¢,=9.9,
with main line (w,/k) =1.0 and stub line (wy/%) =1.0 is shown
in Fig. 4. In this case regions of negative residuals are much
more pronounced than for the right-angle bend. A typical
discretization of the region is also shown in Fig. 4. k

MicrosTRIP CROSSINGS

For microstrip crossings, it appears that the only pub-
lished source of data is that obtained experimentally by Stine-
helfer [1]. He performed transmission loss measurements, as
in the case of T junctions, on a pair of quarter-wavelength
short-circuited stubs placed back to back, so as to determine
the electrical lengths of the stubs. Similarly, a correction to
the physical distance between a pair of crossings was noted.

The circuit model shown in Fig. 5(b) for the crossing
shown in Fig. 5(a) was arrived at as a consequence of the re-
sults obtained in the above experiments The lengths of trans-
mission lines correct for the electrical lengths of the stubs and
their electrical spacing from various other discontinuities. The
shunt capacitor C, takes care of the charge surplus or defi-
ciency near the crossing. ‘
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Fig. 6. Potential residual near a microstrip crossing
(w1/h=3, wa/h=1, and &=9.9).

{6 (P2)+3 [¢W1 122 (Pa) — Gy 2P (Pm)] }. Similarly, the po-
tential corresponding to microstrip-like charge distribution
0P (P,) of width-to-height ratio (wi/k) on the intervals
|3 > 10 (6a(P)+3 19100 (P~ 9100 (B}
By superposition of these two resultant distributions,
Fig. 4. Potential residual near a microstrip T junction microstrip-like charge densities of appropriate width-to-height
(@1/h=1.0, w3/h=1.0, and &=9.9). ratios are generated, on the arms of the crossing, up to the four
terminal planes. Therefore, the potential residual sought is

¢t (P) = — {‘f’w(l)(Pu)+%[¢1.0(1)(Py) —¢—‘1‘0(‘1)(Py)]
+6® (Pa) +3 00,2 (Po) =60y 2@ (P)]} (19)

and the integral equation governing the excess charge is

¢ (P) = f ot (P)GH(P; P') dP'. (20)

As in earlier instances, integration over a finite region is suffi-
cient, since both potential residual and charge-density dis-
tribution go to zero on moving away from the discontinuity.

The Green’s function given by (12) is also valid for
G*(P; P") with

fHm) = [(Zn)z + (x_T”I> <y - y>2 172

- % — 2"\?2 y 4 y\22
e+ (250) + (212
Fig. 5. Microstrip crossing together with its equivalent circuit. - -
B Yy = N
y o + [ @nye ( ) ( )
As in earlier discontinuities, the potential residual sought L N
is obtained from the potential due to microstrip-like charge
N . v+ y\2e
distributions of the four arms of the crossing, up to the refer- 2
+ (2%) -+ (21)
ence planes Ty, Ts, T3, and Ty, _

To obtain such a distribution, an infinite microstrip-like
charge ¢,,@(P,") of width-to-height ratio (w»/k) is required. while the crossing capacitance is given by
Also needed are two charge distributions 1o, (P,’) with
polarity reversals at x=w;/2 and —wi/2. The corresponding — f ol Dt ,
potential distributions, given by (1) and (2) are ¢,®@(P,), Cy o (P') dP'. (22)
Gwys2? (Pz), and ¢_u;s® (Ps), respectively. By superposition,
microstrip-like charge densities of (w./k) are obtained on the In Fig. 6 the potential residual for a stub of (w;/%) =3 and
two intervals [x[ >uwn/2, and the resulting potential is main line of (w:/k)=1, on a substrate of relative dielectric
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Fig. 7. Microstrip bend capacitances normalized to strip width as a
function of width-to-height ratio and substrate permittivity.

constante,=9.9, is shown. Also shown in the figure is a typical
discretization of the region.

REsuLTS AND COMPARISON WITH EXISTING DATA

The bend capacitances obtained by Stephenson and Easter
{13] by means of their two resonant measurements agree with
each other in order of magnitude only. However, the two types
of measurements, both 90° bends and chamfered corners for a
50-Q microstrip line on alumina substrate, indicate that the
lengths of transmission line in the model of Fig. 1 are negligi-
ble.

For various sound reasons, Stephenson and Easter con-
clude that the result obtained via the right-angle bend in a
symmetrical open-ended resonator is the better of the two.
Error limits are also indicated. Their measurement, at 10
GHz on 0.5-mm Lucalox with a strip width corresponding to
approximately 50-Q characteristic impedance, is shown in
Fig. 7 together with their indicated error limits.

Also shown in Fig. 7 are bend capacitances, calculated by
this method, normalized with respect to strip width for vari-
ous commonly used substrates. As expected, the calculated
values are lower than those obtained experimentally. Never-
theless, the close agreement between the results is an indica-
tion of the accuracy of the method. Typical computation time
on an IBM S360/75 is 50 s for ¢,=1.0 and 110 s for ¢,=9.9.

Stinehelfer’s [1] measurements, on quarter-wavelength-
long short-circuited stubs, indicate that the electrical length
of the stubs is shorter than the physical length, while Trough-
ton's measurements, on quarter- and three-quarter-wave-
length open-circuited stubs, indicate that the electrical length
of the stub is longer than the physical length. Troughton also
indicates that “if the stub is A/4 and 3 \/4, Al (the correction
to the physical length) is consistent, but differs from the value
found from a half-wavelength stub.” In addition to the specific
problems in each measurement (such as accurate end-effect
correction in Troughton’s case, difficulty of determining the
exact frequency at which total transmission occurs in Stine-
helfer’s case, and accurate phase velocity in both cases), part
of the discrepancy is resolved considering the model given in
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Fig. 8. Microstrip T junction capacitances, normalized to main-line

width, as a function of stub-line impedance.

Fig. 3(b). If L denotes the physical length of the stub, in
Troughton's case already corrected for the end effect, then
Troughton measured the frequency at which (Ja+L)=N/4,
while Stinehelfer measured the conditions under which cot
[27(l+LY/N ] =wCrZ. As a matter of fact, in principle, per-
forming measurements on open- and short-circuited quarter-
wavelength stubs, it would be possible to determine both
l; and Cr. This, however, may be frustrated by the difficulties
already enumerated. ‘

The theoretical results of Leighton and Milnes [15] on the
approximate model of the microstrip line, are valid over a re-
stricted range of parameters. Since both the model and the
reference planes used here are totally different, no comparison
was made with their data.

The approximate theoretical results of Wolff, Kompa, and
Mehran [11], [12] are in terms of magnitudes of scattering
coefficients of the T junction. The data given are for poly-
guide substrate, relative dielectric constant of ¢,=2.33, and
they show very pronounced frequency dependence, especially
above 5 GHz. This, at first sight, cannot be explained in terms
of the capacitor Cr obtained here. A quick calculation, how-
ever, will indicate that at 5 GHz for ¢,=2.33 the wavelength
is about 40 mm, while the typical dimensions required for the
characteristic impedances utilized range from 4.5 to about
10 mm. For such structures the excess charges occupy a sig-
nificant fraction of the wavelength, so that the electrostatic
approximation is not valid. This argument is further sub-
stantiated by their note to the effect that the frequency de-
pendence is small for alumina substrate (e, =9.9), where realis-
tic impedances are obtained for smaller width-to-height ratios
and the commonly available substrate thicknesses are 0.020
and 0.025 in.

Fig. 8 shows the capacitance Cr normalized to main-line
width plotted against stub-line impedance. The behavior of
Cr, in that it varies from positive to negative depending
whether there is charge deficiency or charge surplus, is similar
to that observed experimentally by Matthaei, Young, and
Jones [17] in stripline. Due to the variation of the sign of the
potential residual, generally speaking, the capacitances thus
obtained are expected to have somewhat larger errors than,
for example, in the open-circuit case, where the potential
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Fig. 9. Microstrip crossing capacitances, normalized to main-line
width, as a function of stub-line impedance.

residual is of uniform sign. The central processing unit (CPU)
time required on an IBM S360/75 to evaluate Cp on a dielec-
tric substrate of ¢,=9.9 is 3.6 min.

The results given by Stinehelfer [1], done on two short-
circuited quarter-wavelength-long stubs back to back, indi-
cate that the electrical length of the stubs is shorter than the
physical length. However, arguing as for the T junction, the
model given in Fig. 5(b) would indicate that such a measure-
ment in effect determines the frequency at which 2 cot
[2r (4 L) ]/A=wCyZ. L is the physical length of the stub.
Another transmission loss measurement, on quarter-wave-
length-long open-circuited stubs, would give the frequency at
which (la+ L) =\/4. In principle, s and C; may be determined
from two such measurements. The difficulties with such an
experimental approach were outlined in {1, sec. 5.7.4]. Using
the results given by Stinehelfer, no estimate of C, can be
made. There appear to be no other data available for com-
parison.

In the computer program the computational details for
the stub and main line are somewhat different. Therefore,
interchanging the width-to-height ratios of the stub and main
line left C; unchanged. This, in a small measure, provided a
check on the program details.

Fig. 9 shows crossing capacitance values C} normalized to
main-line width for various main-line impedances, plotted
against stub-line impedance. The stub characteristic im-
pedances range from 25 to 100 Q. The substrate dielectric
constant used is €,=9.9, As in the case of T junctions, due to
the variation in the sign of the potential residual, generally
speaking the errors in capacitance values can be expected to
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be larger than in those cases where the potential residual is of
uniform sign. The computation time required on an IBM
S360/75, for Cy on a relative dielectric constant €,=9.9 is
about 3.7 min,

CONCLUSIONS

Extensive microstrip discontinuity capacitance values are
presented. In the case of microstrip right-angle bends the only
available experimental result is in close agreement with the
calculations. It is hoped that more experimental results will
become available in the future.

The methodology utilized can be extended to analyze the
electrostatic capacitive effect of virtually any microstrip dis-
continuity.
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